Numerische Lösung partieller Differentialgleichungen mit der Finite-Elemente-Methode PDF

Darstellung der Wärmeverteilung in einem Pumpengehäuse mit Hilfe der Wärmeleitungsgleichung. Elementkanten als schwarze Linien zu sehen. Die Ansatzfunktionen enthalten Numerische Lösung partieller Differentialgleichungen mit der Finite-Elemente-Methode PDF, die in der Regel eine physikalische Bedeutung besitzen, wie z.


Författare: Wieland Richter.

Die Idee, ein elementar gehaltenes Buch Uber die Methode der Finiten Elemente zu schreiben, entstand zu der Zeit, als ich noch wissenschaftlicher Mitarbeiter am GieBerei-Institut der RWTH Aachen war. Unter der Leitung von Herrn Prof. Dr .. P.R. Sahm beschaftigte ich mich mit Temperaturberechnungen in abkUhlenden GuBstUcken. Zahlreiche Gesprache mit Ingenieuren und Studenten zeigten mir, daB zwar die Bereitschaft vorhanden war, sich mit diesem Naherungsverfahren vertraut zu machen, jedoch fehlte in den meisten Fallen die Einstiegsliteratur. Der Schwerpunkt der meisten BUcher Uber Finite Elemente liegt in der Anwendung die­ ser Methode in der Mechanik (Elastizitatstheorie) – geschrieben von Fachleuten fUr Fachleute. Auf die naherungsweise Losung el­ liptischer oder gar parabolischer Differentialgleichungen wird, wenn Uberhaupt, nur sehr kurz eingegangen. In diesem Sinne ist das vorliegende Buch genau als GegenstUck zur bekannten Literatur anzusehen. Es richtet sich in erster Linie an Naturwissenschaftler und Ingenieure der verschieden­ sten Fachrichtungen, die sich mit diesem Problemkreis vertraut machen wollen. Der Kenner wird sicherlich einige interessante Themen in diesem Buch vermissen, der Anfanger wird es zu schat­ zen wissen. Inhaltlich teilt sich das Buch in drei Themenbereiche auf: Der erste behandelt die numerische Losung elliptischer Randwert­ und parabolischer Randanfangswertaufgaben. Die prinzipielle Vorgehensweise wird anhand eindimensionaler Probleme erklart und auf zweidimensionale Ubertragen. Danach werden die beiden Differentialgleichungstypen fUr drei Ortskoordinaten behandelt.

Verschiebung eines bestimmten Punkts im Bauteil zu einem bestimmten Zeitpunkt. Die Suche nach der Bewegungsfunktion ist auf diese Weise auf die Suche nach den Werten der Parameter der Funktionen zurückgeführt. Die Entwicklung der FEM war in wesentlichen Etappen nur mittels der Entwicklung leistungsfähiger Computer möglich, da sie erhebliche Rechenleistung benötigt. Daher wurde diese Methode von vornherein computergerecht formuliert. Sie brachte einen wesentlichen Fortschritt bei der Behandlung von Berechnungsgebieten beliebiger Form.

Mit der FE-Methode können Probleme aus verschiedenen physikalischen Disziplinen berechnet werden, da es sich grundsätzlich um ein numerisches Verfahren zur Lösung von Differentialgleichungen handelt. Anfang der 1980er Jahre ihren Einzug hielt. Approximation in Elasticity based on the concept of function space. Topp: Stiffness and deflection analysis of complex structures.

The finite element method in plane stress analysis. Die erste Anwendung der FEM war die lineare Behandlung von Festkörpern und Strukturen in Form der Verschiebungsmethode und davon ausgehend hat die FEM ihre Anstöße erhalten. Im weiteren Verlauf der Forschung wurde die Finite-Elemente-Methode immer weiter verallgemeinert und kann nunmehr in vielen physikalischen Problemstellungen, u. Anschließend gibt er im sogenannten FE-Präprozessor weitere Eingaben vor. Im CAD-Programm wird das Bauteil konstruiert und mittels einer Direktschnittstelle oder mit einem neutralen Austauschformat wie STEP in den FE-Präprozessor übertragen. Es berechnet die Simulation, wie sich die Lasten, Kräfte und Randbedingungen auf die Einzelelemente des Bauteils auswirken, und wie sich die Kräfte sowie die Auswirkungen im Bauteil fortpflanzen und auf benachbarte Elemente auswirken.

Die Berechnung liefert zunächst eine grobe Näherungslösung. Im Falle der mechanischen Festigkeitsberechnung erhält der Benutzer als Ergebnis des FEM-Gleichungslösers insbesondere Spannungs-, Deformations- und Dehnungswerte. Diese kann der Postprozessor zum Beispiel in einem Falschfarbenbild darstellen. Die Finite-Elemente-Methode ist ein diskretes Verfahren, d.

Lösung wird auf einer diskreten Untermenge des Grundgebietes berechnet. Unterschied zur analytischen Betrachtung auf infinitesimalen Elementen hervor. Die Ecken der finiten Elemente heißen Knoten. Diese Knoten bilden die diskrete Untermenge für das numerische Verfahren. Beispiel für die Anwendung eines adaptiven Gitters zur Berechnung der Luftströmung um einen Flugzeugflügel. Bei gewissen Aufgabenstellungen ist die Unterteilung in Elemente durch das Problem bereits weitgehend vorgegeben, zum Beispiel bei räumlichen Fachwerken, bei denen die einzelnen Stäbe die Elemente der Konstruktion bilden. Das gilt auch bei Rahmenkonstruktionen, wo die einzelnen Balken oder unterteilte Balkenstücke die Elemente der Aufgabe darstellen.

Räumliche Probleme werden mit einer Unterteilung des dreidimensionalen Gebietes in Tetraederelemente, Quaderelemente oder andere dem Problem angepasste, möglicherweise auch krummflächig berandete Elemente, dies sind i. Dichte des Netzes, hat maßgeblichen Einfluss auf die Genauigkeit der Resultate der Näherungsrechnung. Da gleichzeitig der Rechenaufwand bei der Verwendung feinerer und dichterer Netze steigt, gilt es, möglichst intelligente Vernetzungslösungen zu entwickeln. In jedem der Elemente wird für die gesuchte Funktion, bzw. Problem beschreibenden Funktionen, ein problemgerechter Ansatz gewählt. Im Besonderen eignen sich dazu ganze rationale Funktionen in den unabhängigen Raumkoordinaten.